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Computation of the Neron-Tate Height 
on Elliptic Curves 

By Heinz M. Tschope and Horst G. Zimmer 
For Daniel Shanks on the occasion of his 70th birthday 

Abstract. Using Neron's reduction theory and a method of Tate, we develop a procedure for 
calculating the local and global Neron-Tate height on an elliptic curve over the rationals. The 
procedure is illustrated by means of two examples of Silverman and is then applied to 
calculate the global Neron-Tate height of a series of rank-one curves of Bremner-Cassels and 
of a series of rank-two curves of Selmer. In the latter case, the regulator is also computed, and 
a conjecture of S. Lang is investigated numerically. 

In dealing with the arithmetic of elliptic curves E over a global field K, the task arises of 
computing the Ndron-Tate height on the group E(K) of rational points of E over K. Solving 
this task in an efficient manner is important, for instance, in view of calculations concerning 
the Birch and Swinnerton-Dyer conjecture (see [2]) or of the conjectures of Serge Lang [6]. 
The purpose of this note is to suggest a procedure for performing the necessary calculations. 

1. Multiplication Formulas. Let the elliptic curve E over any field K be defined by 
a generalized Weierstrass equation 

(E) y2 + alxy + a3y = X3 + a2x2 + a4x+ a6 (ai E K). 

As usual, we introduce the quantities (see [10], [11]) 

b2 =al +4a2 b4= ala3 + 2a4, b6 = a3 + 4a6, 

= 2 2 
b8 = a1a6 - a1a3a4 + 4a2a6 + a2a3 - a4, 

= b2 - 24b4, c6 = -b3 + 36b2b4 - 216b6, 

and the discriminant 

A= -b2b8 - 8b2 - 27bW + 9b2b4b6 # 0, 

as well as the absolute invariant 
3 

belonging to E over K. 
The fact that E is nonsingular implies the nonvanishing of the partial derivatives 

of the polynomial 

F(x, y) = y2 + alxy + a3y-X3 -a2x2 -a4X-a6 
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at every rational point P E E(K): 

/a (F ) F 
(P) + 0) 

The addition law in the additive Abelian group E(K) of rational points on E over K 
is given by the following formulas: 

For P = (xp, yp), Q = (XQ, YQ) E E(K), denote the sum by P + Q = 

(Xp+Q, YP+Q). Then, 

(1) XP+Q (XP+ XQ) +( ) + a( YP Q) -a2 

YP+Q - P 
Q (xP- XP+Q)-alxp+Q - a3-YP if P Q 

and 

X2P = -2xp + tp + a1tp - a2, Y2P = tp(xp - X2p) - alx2P - a3- 

(2) _ 3x + 2a2xp + a4 - alyp 
for tp = if P =Q. 

2yp + alxp + a3 

Generalizing classical formulas (see [3], [4], [15]), we obtain 

PROPOSITION 1. For a rational point P = E(K) and an r e N, the r-fold rational 
point has coordinates 

rP = (XrpI YrP) = ( 4(P) Qr(P)) 

where 4>r, *r, and 2Qr are polynomials in x and y with coefficients in 
Z[ a1, a2, a3, a4, a6] given by the following recursion formulas: 

01 = X, F2 = X4 - b4x2- 2b6x - b8, 

S21 = Y. * =0?, *1 =1,*2 = 2y +alx +a3, 

I3 = 3X4 + b2X3 + 3b4X2 + 3b6x + b8, 

I4 = 12[2x6 + b2X5 + 5b4x4 + 10b6X3 + 10b8X2 +(b2b8 - b4b6)x + b4b8 - b62] 

andfor r > 2, 

(Dr = Xtr2 
_ 

*r-ltr + 1 

(3) 2*20r = r~-1'r+2 - 
*r-2Ir+1 - *2*r[alDr + a3*r2], 

'P = 3Pr' 2 -' *r'Pr+1 2r+1 r r?2 r-1 r+l' 

2I2 r ' r [ = r[-41'r + 2 Pr-2*r27+ 11] 

Moreover, Or, as a polynomial in x, has degree r2 and leading coefficient 1, whereas 
'r (resp. 'P-I"r), as a polynomial in x, has degree (r2 - 1)/2 (resp. (r2 - 4)/2) 
and leading coefficient r (resp. r/2) provided that r is odd (resp. even). If we assign 
the weight 2, 3 or i to x, y or a , then each term of 4?r has weight 2r2 and each term of 
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Ir (resp. I2-1'r) has weight r2 - 1 (resp. r2 - 4). The coefficients of Or, *r, as 
polynomials in x, y, belong already to Z[b2, b4, b6, b8]. 

From Proposition 1, one derives the following 

COROLLARY. For r E N, we put 'Ir = -r. Then, for r, n E N, we have 

(4) n2(p) = *n2r2(P)*r2(nP) 

and, more generally, 

n 

(4') *2 = IH *T2m2(1n-)(Mi-1p). 
v=1 

Furthermore, 

(5) XrP*Xn - ~r+n (P) or-n (P) 
(S) x~~~~rP XnP t2(p 2(p) 

(~1)r Q)"r (P - ) 
rP rQ = 

r 
'1Pr(P + (x*~p - XQr (6) XrP - xrQ =-r2(p))2(Q) (XP - XQ) 

and finally, for r E No, 

(7) 42(2rP) = y+2(P)I'2r 2(P) 2 (2rP) =2r 2 

These formulas will be needed in the sequel. 

2. Reduction Theory. Now let the elliptic curve E be defined by (E) over a 
complete field K with respect to a discrete normalized additive valuation v, and 
suppose that the corresponding residue field K of K is perfect. We assume the 
equation defining E over K to be minimal with respect to the valuation v (see [11]). 
Reducing E modulo v yields a cubic curve 

(E) 2+5' x+ 3 + a2X + a-4 + a6 (ai E K) 

over K with discriminant A. If A 0 0, i.e., v(A) = 0, then E is an elliptic curve over 
K, and E has good reduction at v. If, however, A = 0, i.e., v(A) > 0, then F is a 
rational curve over K, and E has bad reduction at v. In the latter case, E is said to 
have multiplicative reduction or additive reduction modulo v, according as V(C4) = 0 
or V(C4) > 0, respectively. 

Denote by EO(K) the set of points in E(K) whose image under the reduction 
map modulo v, 

p: E(K) EK 

is a nonsingular point on F over K. Then, EO(K) is a subgroup of finite index in 
E(K). Further, the set 

E1(K) = {P = (xp, yp) E E(K) I v(xp) < -2, v(yp) < -3} 
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is a subgroup of EO(K), and the restriction po to EO(K) of the reduction map p 
induces an invective homomorphism of the factor group 

AO Eo(K)/E1(K) - o(k) 

to the nonsingular part Eo(K) of E(K). 
We shall use the following result (see [11]). 

PROPOSITION 2. The above groups satisfy 

E(K) =Eo(K) ifE has good reduction atv, 

# (E (K )/Eo (K)) divides v (j) if E has multiplicative reduction at v, 

and 

# (E(K)/EO(K)) < 4 ifE has additive reduction at v. 

3. Definition of Height Functions. Now let K be a global field, that is, an 
algebraic number field or a function field of finite transcendence degree over its field 
of constants k. Then K possesses a complete set MK of nonequivalent additive 
valuations v satisfying the sum formula 

(S) E XAv(c)=O fordOcE K 
V EMK 

with some positive multiplicities X , R (cf. [7], [13]). 
For an elliptic curve E over K, given by the Weierstrass equation (E), we 

introduce the quantities 

(8) = min{ v(b2), ?v(b4), 'v(b6), *v(bs)) 

Let P = (xp, yp) E E(K) be any rational point and d = (xo, oo) designate the 

point at infinity. Then we define the local Weil height on E(K) with respect to v by 
setting 

d 

(p)I - 
lmintA v (xp)) if P :0 0f 

(9) dv~p) - Iy if P = 0. 

Then the global Weil height on E(K) is simply the sum, with multiplicities, over the 
local Weil heights 

d(P) - v X dv(/P) 
V G MK 

(see [13]). 
In order to define the global NMron-Tate height on E(K), we proceed in the same 

way as with the global Weil height. However, before introducing the local Neron-Tate 
height on E(K), we need some estimates. 

PROPOSITION 3. The local Weil height on E(K) satisfies the following estimates: 

(6[v - v(A)) + 5a0v < d,(P + Q) + dv(P - Q) 

(10) -2d,(P) - 2d,(Q) - v(x, - XQ) 

< -2av if P, Q,P ?Q#(6), 
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and 

(11) -(2(6 -v-()) + 4av < dj(2P) - 4dv(P) - V(2(p)) 
3 

as if 2P =* 6 

where the constant av can be chosen to be O or -log 2 according as the valuation v of K 
is discrete or archimedean, respectively (see [13]). 

These estimates are obtained as generalizations of those given in [13], [14]. At the 
same time, they sharpen those cited. 

Remark 1. It is interesting to note that the authors of [2] suggested that a 
sharpening of the estimates in [13], [14] should be possible. Proposition 3 appears to 
be a step in this direction. 

Employing (10), the inequalities (11) can be further generalized. 

COROLLARY. For any m E N, there are (recursively computable> nonnegative 
constants cym, c2,m E R depending on E, K, and v such that, given an arbitrary point 
P E E(K) with mP # (, we have 

(I1) ci m < dv(mP) - m2dv(p) - 2V(*m2(P)) < c2,m 

We are now in a position to define the local Neron-Tate height on E(K) with 
respect to v. Let m, n E N and m > 2. Then, for a rational point P E E(K) such 
that mnP _ C? for each n E N, we define the local NMron-Tate height of P with 
respect to v by the limit formula 

(12) V, i( ) = lim [dv (m P) _ 1 (v_(___)_ 
n - oo m 2 n 2 m 2 n 1 

PROPOSITION 4. For an elliptic curve E defined by a Weierstrass equation (E) over a 
global field K and any valuation v of K, the function S, mg defined by (12) on the 

rational point group E(K), exists, is independent of the choice of m E N, so that 

aV M =as9 and fulfills the relations 

(13) 3S(P + Q) + 3S(P - Q) - 28v(P) - 28V(Q) - v(xp - XQ) + 6v(A) = 0 

for any two points P = (xp, yp), Q = (xQ, yQ) E E(K) such that P. Q. P ? Q 9 

and 

(14) 3S(rP) - r283(P) - ?v(4r2(P)) + r2 v(A) = 0 

for any P = (xp, yp) E E(K) and r E N such that rP # 0. 

Proof. The proof is an adaptation of the corresponding proof of the existence 
theorem in [14]. Indeed, one exploits (10), (11) from Proposition 3 and (11') from the 
corollary to establish the existence of S, m. Then formulas (6) and (4) from the 
corollary to Proposition 1 are utilized to prove that ., - fulfills the asserted relations 
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(13) and (14). Finally, the independence of A on m is a consequence of the 
following 

COROLLARY 1. The function 8Q m on E(K) is related to the local Weil height on 
E( K) through the estimate 

(15) 3v m(P) -(dv(P) + I2 (A) < cm, 

where 

cm = *max(Iclml Ic2,.mI; 

In fact, 3i m = is uniquely determined by the properties (14) and (15) and hence is 
independent of the choice of m. 

We can now define the global Neron-Tate height on E(K) as the sum, with 
multiplicities, over the local Neron-Tate heights as follows (see [14]): 

( X v=8 (P) if P o , 
(16) 3(P) = { K i 

0 if P = . 

By the sum formula (S) we then obtain on the basis of (13) and (14): 

COROLLARY 2. The global NMron-Tate height on E(K) fulfills the relations 

(13') 8(P + Q) + 3(P - Q) - 28(P) - 28(Q) =O 

and, for r e N, 

(14') 8(rP) - r28(P) = 0. 

Remark 2. Corollary 2 shows that the global Neron-Tate height 8 is a quadratic 
form on E( K), whereas Proposition 4 implies that the local Neron-Tate height 3v is 
"almost" a quadratic form on E(K). 

4. Computation of the Neron-Tate Height. Again, let the elliptic curve E be given 
by (E) over a global field K. Fix a nonarchimedean (discrete) valuation v of K. 
Suppose that P = (xp, yp) E E(K) is a rational point satisfying v(xp) < tzv. 

By Proposition 1, on choosing an m E N such that m > 2 and v(m) = 0, we have 

OM 4m(P) Xmnp = .nP 
'i', ( P) 

Now v(xp) < It, together with v(a,) > ILv entails 

V(4Dmn(P)) = m2nv(xp), V((%2(P)) = (m2n - 1)v(xp). 

Hence 

V(Xmnp) = V(Xp). 
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Thus we obtain from the limit formula (12) and the definition (9) of dv the asserted 
relation 

S(P) = -2 v(xp) + JL v(A) = d1,(P) + 
I 

(A) 

PROPOSITION 5. Suppose that a rational point P = (xp, yp) E E(K) satisfies the 
inequality v (xp) < ILv for a nonarchimedean (discrete) valuation v of the global field 
K. Then the local Neron-Tate height of P essentially coincides with the local Weil height 
of P with respect to v; more precisely, 

S(P) = dv(P) + v(A). 

From Proposition 5 we get the following theorem, which is crucial for the 
calculation of the Neron-Tate height on E(K). 

THEOREM 1. Let E be an elliptic curve defined by a Weierstrass equation (E) over an 
algebraic number field K. Choose a discrete normalized additive valuation v of K and 
suppose that the equation (E) is minimal with respect to v.* Then, for each nontorsion 
point P E EO(K), the local Neron-Tate height of P is essentially equal to the local Weil 
height of P with respect to v; more precisely, 

8 (P) = dv(P) + v(A). 

Proof. The theorem can be found in [9]. For the convenience of the reader, 
however, we give a proof. 

By Proposition 5, we may confine ourselves to the case in which v(xp) > IL, The 
subcase in which v(xp) > ,v > 0 would lead to a contradiction to the choice of 
P E EO(K). Hence it remains to consider the subcase in which 

v(xp) > tLv = 0. 

The reduction map of Section 2, 

p0 E0(K)/E1(K) - 4o(k), 
is an invective homomorphism. Since K is a number field, the residue field K of K 
with respect to v is finite and hence so is the group Eo(K). Therefore, for any 
P E EO(K), there exists a number r E N such that rP E E1(K). Choose r E N 
minimal with this property. Then we have 

V(Xrp) < lv = 0. 

From this, since v(xp) > Lv = 0 and v(a ) > I,, = 0, we conclude that 

v(Fr(P)) > 0 and v(4r(P)) > 0. 

We claim 

(17) V(Xrp) = -V(*r2(p)) 

*The required minimal model of E is found by Tate's algorithm [11]. 
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By Proposition 5, Formula (14) of Proposition 4, and the definition (9) of du, this 
claim yields the asserted identity 

SV(P) = 1 (rP) - u+ r2 v()} 

= d,(P) + 1v(A) 

since v(xp) > v = 0. 
To prove (17) it suffices to show that 

(18) V( 'Dr(P)) = 0. 

This is accomplished by verifying (18), first for the lower r E N and then for general 
r E N. 

Let r = 2. 
If v(3x2 + 2a2xp + a4 - alyp) > 0 we would get a contradiction to the assump- 
tion that P E EO(K). Hence it is enough to consider v(3X2 + 2a2xp + a4 - alyp) 

0. But then the asserted relation (18) follows directly from the formula (2) for x2P 
and Proposition 1. 

Let r = 3. 
By the minimal choice of r, we have 

v(*2(P)) = 0 and v('3(P)) > 0. 

Now the decomposition formula (which can be verified without trouble) 

P4(P) = J2(P)[43(P)(6x2 + b2x + b4)-4(P)] 

yields v(44(P)) = 0, and hence the relation from Proposition 1, 

03(P) = XP*32(P) - *2(P)*4(P), 

leads to the identity v(43(P)) = 0, as asserted in (18). 
Finally, let r > 4. 

Again, by the choice of r, we have 

V(42(P)) = V(3(P)) = = V(4r-l(P)) = 0 and 

V(4r(P)) > 0. 

Then Formula (5) from the corollary to Proposition 1 yields 

V(X2P - xp) = 0 and v(x(r-l)P - xp) > 0, 

so that another consequence of Formula (5), viz., 

*r+l(P) [(X(r-l)P -XP) +(Xp - 
X2P)1 *r~-J(p)*2 

leads to v(r+ 1(P)) = 0. Now the identity from Proposition 1, 

Or(P) xpr= Xp(P) - *rj(p)*r+j(p) 

reveals that v(Fr(P)) = 0, as asserted in (18). This proves Theorem 1. 
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Remark 3. Theorem 1 makes it possible to calculate the local Neron-Tate height 
Q( P) with respect to all discrete valuations v of the number field K for all 
nontorsion points P E E(K). 

This is true because Proposition 2 tells us that a suitable multiple rP of P belongs 
to EO(K). Then we apply Theorem 1 to calculate Sv(rP) and use Formula (14) from 
Proposition 4 to get the desired value of 3S(P) itself.** 

Remark 4. Torsion points P E E(K) are of no interest in this connection since 
their global Neron-Tate height is 8(P) = 0. 

It remains to show how to compute the local Neron-Tate height 8V for archi- 
medean valuations v of the number field K. From (4') in the corollary to Proposi- 
tion 1, we get the formula 

1 v(*M2. (P)) M 1 v(2(mv_-P)) 
2 m2n _=E 2 2 v 

which proves to be useful in the sequel. 
Now, since we are interested here only in the case of K = Q, the field of rational 

numbers, we confine ourselves to considering its completion K. = Q. = R with 
respect to the ordinary absolute value v = v. = -log I I. Then Tate's method is best 
suited for calculating Sv (see [12]). 

THEOREM 2. Let E be an elliptic curve defined by a Weierstrass equation (E) over 
the field R of real numbers and denote by v. = - log II the ordinary additive 
archimedean valuation of R. Take an open subgroup F of E(R) such that all 
P = (xp, yp) E F satisfy xp 0 O.* * For P E F such that 2nP # L!? for all n E N, 
define the entities Tn Wn, and Zn by putting 

1 Wn T , Tn - forn E NO, 

where 

Wn = 4Tn + b2Tn2 + 2b4Tn3 + b6Tn4 Zn =1-b4Tn2-2b6Tn3 -b8Tn4. 
Let 

P) E 2 X(P) =gZlog xp + 1P) 

Then the local Neron-Tate height of P with respect to v. is 

SV3(P) = X(P) - 
I 

log A1. 

Proof. See [12]. However, the assertion of Theorem 2 also follows from 

PROPOSITION 6. In the situation of Theorem 2 we have for n E NO 
I 'I'22 (2 P) = 2(2nP) 

xn 
= 

2P n 4 
X2'1P ~~X2P X21.P 

* * Added in proof. Joe Silverman, whom we wish to thank for some valuable hints, told us that he has 
carried out similar height computations (unpublished) avoiding, however, the use of Proposition 2 by 
employing Tate's local formulas (see [14]). 

***Hence r is either E(R) or the identity component of E(R) according as E(R) is connected or 
disconnected. 
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Proof. The proof is carried out easily by means of the formulas (7) in the corollary 
to Proposition 1. 

Remark 5. The simplest way of finding a subgroup F of E(R) of the type desired 
in Theorem 2 is by applying a birational transformation to (E) to obtain a model 
(E') such that b6 < 0. Then F = E'(R) itself will do. 

In the special case of K = Q we are interested in, the set MQ consists in the 
p-adic valuations vp corresponding to the primes p of Q and the additive valuation 
v= -log | I corresponding to the unique archimedean absolute value I I on Q. Of 
course, the multiplicities in the sum formula (S) are all X = 1. 

5. Examples. We are now in a position to calculate the Neron-Tate height 8 on the 
group E(K) of rational points on an elliptic curve E over the rational number field 
K= Q. To this end, we use the defining formula (16) for 8 with multiplicities 
X = 1 to reduce the computation of 8 to that of the local Neron-Tate heights 3v on 
E(K). For discrete valuations v of Q, the height 8V is calculated by means of 
Theorem 1 in accordance with Remark 3, and for the archimedean absolute value 

v., = -logi , the calculation of Sv is performed on the basis of Theorem 2. 
(i) Examples of Silverman. We illustrate our procedure by verifying the height 

calculations of Silverman [9]. 

(A) E: y2 + 21xy + 494y = x3 + 26x2, 
P = (0,0) E E(Q) 
A= -2. 13 _ 192. 

Silverman obtains 
3(P) = 0.010,492, .... 

We have 

(a) SJ(P) = 0.038,612,393,..., 

(b) P Z E0(Q) for p = 2, 13 and 19; and 

SVP(P) = 0 for all primes p 2, 13 or 19. 

Now 

13PeEO(Q) for = 2, 

3PeEO(Q) for = 13, 

2P G Eo(Q) for p =19. 

One computes 

*2(P = 2 13 * 19, I3(P) = 23 * 133 . 192, I13(P) = -28o 1356. 1942 

and 

X2P = -2 13, x3P = -2 *19, X13P = -2 4 5 * 13 * 19. 

This leads to 

3V2(13P) =3 In 2, V13(3P) 
I 

In13, SV,9(2P) 
I 

In 19. 
Hence by (14)4 of(2P)siin19 

Hence, by (14) of Proposition 4, 
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By (16) this adds up to 

8(P) = 0.010,492,061, .... 

(B) E: y2?+ xy+80y-x3+8X2, 

P = (0,0) E E(Q), 

A = _211 . 52. 19. 

Silverman gets 

8(P) = 0.010,284, ... 

and we obtain similarly to (A) 

8(P) = 0.010,284,005, .... 

(ii) The Bremner-Cassels Curves. Our procedure turns out to be particularly useful 
for calculating the global Neron-Tate height on the elliptic curves 

E:y2 =XI+ px 

for primes p of Q such that p 5 (mod 8), as they were considered by Bremner and 
Cassels [1]. The authors exhibit points P E E(Q) of infinite order on 43 curves of 
this type, where 

2 r r ,t 
P = (x,,yp) with xP=- 2 YP =-3 forr,s,t E Z 

S S 

such that 

g.c.d.(r,s) = 1; r,t 0 (modp); and 
rn-t-1(mod2), s-0(mod2). 

One easily checks that P e EO(Q) for all primes p of Q and all points P E E(Q) 
displayed in [1]. (Notice that 2yp and 3X2 + p are relatively prime.) This leads to 

PROPOSITION 7. For the points P E Ep(Q) of infinite order on the Bremner-Cassels 
curves in [1], the Neron-Tate height is 

8(P) = 8V(P) + jln IA I + lnjs |. 

(iii) Modular Elliptic Curves. In [16, pp. 75-113], N. M. Stephens and J. Daven- 
port list 68 modular elliptic curves E of rank 1 with a rational point P E E(Q) of 
infinite order. We computed the Neron-Tate heights of these points P.t Comparison 
of the Neron-Tate height of the generator of the 63rd curve in their table with the 
Neron-Tate height of the point in Silverman's second example (see (i) (B) above) 
shows that the two values agree. It turns out, as one easily checks, that the 
corresponding two curves are birationally isomorphic (see Table 1). 

t We have compared the height values in our Table 1 with those in a corresponding (unpublished) table 
of Silverman containing up to six digits behind the period. They agree (except for the sixth digits of the 
curves 58A, 61A, 135A, 153A, 189C and for the fifth and sixth digit of the curve 185D). 
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TABLE 1 

1 .) al = 0 a2 = 0 a3 = I a4 -1 a6 = 0 

P7 = (0; 0) 
37A global height: .02555570412 

2.) al =0 a2= I a3 = I a4 = 0 a6 = 0 

P3 = (0 ; 0) 
43A global height: .031408253544 

3 .) al = I a2 =-1 a3 = I a4 = 0 a6 = 0 

53A P = (0; 0 ) 
global height: .046490742319 

4.) al 0 a2 =-1 a3 = 1 a4 =-2 a6 = 2 

57E P = ( 2 ; I ) 
global height: .018787296368 

5.) al 1 a2 =-1 a3 = 0 a4 =-1 a6 = 1 

58A P t0 ; 1 ) 
global height: .02121015392 

6.) al =1 a2 =0 a3 = 0 a4 =-2 a6 = 1 

61A =(1 ; 0 
global height: .039593865681 

7.) al 1 a2 =0 a3 = 0 a4 =-I a6 = 0 

65A = (-1 1 global height: .187757 

8.) al =0 a2 =0 a3 = 1 a4 = 2 a6 = 0 

77F P = ( 2 ; 3 
global height: .049013989632 

9.) al 1 a2 1 a3 = 1 a4 =-2 a6 = 0 
P= (0 ; 0) 

79A global height: .048832105054 

10 .) al I a2 0 a3 = I a4 =-2 a6 = 0 

82A P (0 ;0) global height: .112353462459 

11 .) al = 1 a2 = 1 a3 = I a4 = 1 a6 = 0 

83A P = ( 0 ; 0 
global height: .0886461.47057 

12 .) al = 0 a2 = 0 a3 = 0 a4 -4 a6 = 4 

88A P =(2 ; 2) 
global height: .020132182168 

13 .) al 1 a2 =1 a3 = 1 a4 =- a6 = 0 

P9 
= (0; 0) 

89C global height: .056052440615 

14 .) al =0 a2 =0 a3 = I a4 = I a6 = 0 

91A P 0 ; 0) 
global height: .071196075334 

15 .) al =0 a2= I a3 = I a4 -7 a6 = 5 

91B l 
= (-1I; 

global height: .529622543205 

16 .) al = 0 a2 = 0 a3 = 0 a4 =-1 a6 = 1 

P2 =(1 ; 1) 
92C global height: .024904198649 

17 .) al = I a2 =-1 a3 = I a4 =-2 a6 = 0 

99A P = (; 0 ) 
global height: .151285692281 
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TABLE 1 (continued) 

18 .) al = 0 a2 = 1 a3 = 1 a4 -1 a6 -I 

l0lA p (-1 0 
global height: .082351726475 

19 .) al = I a2= I a3 = 0 a4 =-2 a6 = 0 

102E P=(- 1;2) global height: .07162694647 

20 .) al 1 a2 1 a3 = 0 a4 =-7 a6 = 5 

106Ap (2;1 
global height: .034456340202 

21 .) al 0 a2 =1 a3 = 0 a4 = 0 a6 = 4 

112K P=( 0 ; 2) global height: .119959949363 

22 .) al 1 a2 =-1 a3 = 1 a4 = 4 a6 = 6 
P = ( 0; 2 ) 

1 7A global height: .56516781309 

23 .) al =1 a2 1 a3 = 0 a4 = 1 a6 = 1 

11AP=(0; 
1) 

1 8A global height: .043953097838 

24 .) al = 0 a2 =-1 a3 = 1 a4 =-7 a6 = 10 

global height: .04489257808 

25 .) al 1 a2 0 a3 = 1 a4 = 2 a6 = 0 

122A p= 
I 

1 global height: .060421607704 

26 .) al = 0 a2 = I a3 = I a4 =-10 a6 10 

12AP (1; 1) 
12iA global height: .420260708766 

27 .) al 0 a2 1 a3 = 0 a4 =-2 a6 1 

124B P = I ; I 
global height: .260265346941 

28 .) al =0 a2 =1 a3 = 0 a4 = 1 a6 1 

128C p = C 0 ; I 
global height: .216165582287 

29 .) al = 0 a2 =-1 a3 = I a4 =-19 a6 = 39 

129E 
P 

I1; 
4 

global height: .04997957634 

30 .) al = I a2 0 a3 = I a4 =-33 a6 68 
P (2 ; 2) 

130E global height: .585232076797 

31 .) al = 0 a2 =-1 a3 = I a4 = 1 a6 = 0 
P = (0 ; 0 ) 

131A global height: .108047599334 

32 .) al 0 a2 =1 a3 = 0 a4 -4 a6 = 0 

136A P= (-2 ; 2 
global height: .115753996413 

33 .) al 1 a2 1 a3 = 0 a4 =-1 a6 = 1 

138E P=( 0 ; I global height: .08868409567 

34 .) al 0 a2 =I a3 = 1 a4 =-12 a6 = 2 

141E g =l 
3 

o 
4 

global height: .017243387509 
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TABLE 1 (continued) 

35 .) al = 0 a2 =-1 a3 = 1 a4 =-1 a6 = 0 

11IP= (0; 0 1411 global height: .099247618232 

36 .) al =1 a2 =1 a3 = 0 a4 =-1 a6 =-1 

142 = (-I ; I 142E global height: .090456855492 

37 .) al = 1 a2 =-1 a3 = 1 a4 =-12 a6 = 15 

global height: .016894571319 

38 .) al = 1 a2 =-1 a3 = I a4 =-3 a6 = 2 

145A P= 0 ; 1 global height: .292228814932 

39 .) al 0 a2 =-1 a3 = 0 a4 =-5 a6 1 

148A~ = (-1 ; 2 
global height: .048120589701 

40.) al =0 a2 =1 a3 = 0 a4 =-1 a6 3 

152A~ 
P 

(-1 2 
global height: .032707434794 

41 .) al =0 a2 =0 a3 = 1 a4 = 6 a6 27 

P53A ( 5 ; 13 
153A global height: .056444869251 

42 .) al =0 a2 0 a3 = 1 a4 =-3 a6 2 

153C 
( 0 ; I 

global height: .034740140542 

43 .) al = 0 a2 =-1 a3 = 1 a4 =-1 a6 = 1 

155C = 1 ; 0 ) 
global height: .092071961309 

44 .) al = 0 a2 =-1 a3 = 0 a4 =-5 a6 = 6 

15EP 
(1; 1 ) 156E global height: .073707206024 

45 .) al 1 a2 =1 a3 = 0 a4 =-3 a6 = 1 

158D P = 0 ; 1 
global height: .03958438143 

46 .) al = 1 a2 =-1 a3 = 1 a4 =-9 a6 = 9 

158E P = (-1; 4 ) 
global height: .019495140155 

47 .) al = I a2 =-1 a3 = 0 a4 =-6 a6 = 8 

162K P = 2 ; 0 ) 
global height: .152967441934 

48 .) al =0 a2 = 0 a3 = I a4 =-2 a6 = 1 

163A I ) 
global height: .094954616249 

49.) al =1 a2 =1 a3 = 0 a4 =-6 a6 = 4 
P = (0 ; 2) 
global height: .044978395458 

S0 .) al =0 a2 0 a3 = I a4 = 6 a6= 0 

171A global height: .112983434413 

51 .) al = 0 a2 = I a3 = 0 a4 =-13 a6 =15 

172A P = ( 2 ; I 
global height: .380069831503 
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TABLE 1 (continued) 

52 .) al = 0 a2 =-I a3 = 1 a4 =-148 a6 = 748 

175A P = ( 7 ; 2 ) 
global height: .332314998542 

53 .) al =0 a2 =-1 a3 = 1 a4 =-33 a6 93 

175C p = 
-3 ;12 

global height: .046286666901 

54 .) al = 0 a2 =-I a3 = 0 a4 = 3 a6 = 1 

176A 
P I ; 2 
global height: .087531915126 

55 .) al = 0 a2 =-1 a3 = 0 a4 =-4 a6 = 5 

184B P' 2 ; 1 
global height: .051533618406 

56 .) al = 0 a2 =-1 a3 = 0 a4 = 0 a6 = 1 

184C P = ( 0 ; 1 ) 
global height: .061565455601 

57 .) al = 0 a2 =-I a3 = I a4 =-5 a6 = 6 

185A P=( 0 ; 2 
global height: .055139483611 

58 .) al 1 a2 0 a3 = 1 a4 =-4 a6 =-3 

185B = ; 2 
global height: .712632645336 

59 .) al = 0 a2 = I a3 = 1 a4 =-156 a6 = 700 

185D P = ; 12 
global height: .057028352204 

60 .) al =0 a2 =0 a3 = 1 a4 =-3 a6 0 

189A P= (-1 1 I 
global height: .031606094417 

61 .) al 0 a2 0 a3 = 1 a4 =-24 a6 =45 

189C P = ; 9 
global height: .931621776106 

62 .) al =1 a2 =1 a3 = 0 a4 = 2 a6 2 

190C P I ; 2 
global height: .065910740941 

63 .) al = I a2 =-1 a3 = I a4 =-48 a6 147 

190D p 13 ; 33 
global height: .010284005728 

64 .) al 0 a2 =-1 a3 = 0 a4 =-4 a6 =-2 

192Q P=( 3 ; 2 
global height: .675801867206 

65 .) al = 0 a2 =-1 a3 = 0 a4 =-2 a6 = 1 

196A p=( 0 ; I global height: .043017725483 

66 .) al =0 a2 =0 a3 = I a4 =-5 a6 = 4 

197A p= I ; 0 
global height: .069433995882 

67 .) al = I a2 =-1 a3 = 0 a4 =-18 a6 = 4 
P = (-1 ; ) 

1981 global height: .097521495699 

68 .) al =0 a2= 1 a3 = 0 a4 =-3 a6 =-2 

200C = -1 1 global height: .146605513301 
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6. Lang's Conjectures. Silverman [9] used his above-cited examples of rank-one 
elliptic curves E over Q to estimate the constants cl, c2 in S. Lang's Conjecture 2 
(see [6]) about lower bounds for the Neron-Tate height 8 on nontorsion points in 
E(Q). We wish to carry through a similar estimation with respect to Lang's 
Conjecture 3 (see [6]) for Selmer's [8] rank-two elliptic curves E over Q. 

In Section 3, Remark 2, we observed that the Neron-Tate height 8 is a quadratic 
form on the rational point group E(Q). This property of 8 is tantamount to the fact 
that the function 

1(PQ) = 2{3(P + Q) - 3(P) - 3(Q)) 

TABLE 2 

al = 0 a2 0 a3 - 0 a4 - 0 a6 - -388800 

P1 ( 76 / 1 224 / 1 

P2 - ( 124 / 1 1232 / 1) 

The transformation with (r;s;t;u) - ( 0 ; 0 0 ; 2 ) leads to 

al m 0 a2 0 a3 m 0 a4 = 0 a6 m -6075 

PI-( 19 / 1 ; 28 / 1 ) 

p the local height decimal 

2 1 / 3 )*ln( 2 ) .231049060186 
3 ( 13 / 12 )*ln( 3 ) 1.190163312723 
5 ( 1 I 3 )*ln( 5 ) .536479304144 
co -.220039705773 

The global height is 1.73765197128 

P2=( 31 / 1 ; 154 / 1 ) 

p the local height decimal 

2 ( 1 / 3 )*ln( 2 ) .231049060186 
3 ( 13 / 12 )*ln( 3 ) 1.190163312723 
5 ( 1 / 3 )*ln( 5 ) .536479304144 
co -.068619441325 

The global height is 1.889072235727 

P1+P2=( 241 / 4 ;-3689 / 8 

p the local height decimal 

2 ( 4 / 3 )*ln( 2 ) .924196240746 
3 ( 13 / 12 )*ln( 3 ) 1.190163312723 
5 ( 1 / 3 )*ln( S ) .536479304144 
co .18319182537 

The global height is 2.834030682983 

Regulator : 3.125459338543 
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TABLE 2 (continued) 

al =0 a2 =0 a3 = 0 a4 0 a6 = -26142912 

P1 = ( 26572 / 9 ; 4329280 / 27 

P2 - ( 61516 / 25 ; 15244064 / 125 

The transformation with (r;s;t;u) ( 0 ; 0 ; 0 ; 2 ) leads to 

al - 0 a2= 0 a3 0 a4 0 a6 -408483 

PI=( 6643 / 9 ; 541160 / 27 

p the local height decimal 

2 ( 1 / 3 )*ln( 2 ) .231049060186 
3 ( 25 / 12 )*ln( 3 ) 2.288775601391 
41 ( 1 / 3 )*ln( 41 ) 1.237857355568 
co .673826315477 

The global height is 4.431508332622 

P2=( 15379 / 25 ; 1905508 / 125 

p the local height decimal 

2 ( 1 / 3 )*ln( 2 ) .231049060186 
3 ( 13 / 12 )*ln( 3 ) 1.190163312723 
5 ( 1 / 1 )*ln( 5 ) 1.609437912434 
41 ( 1 / 3 )*ln( 41 ) 1.237857355568 
?: .588854192712 

The global height is 4.857361833623 

Pl+P2=( 133393 / 784 ; 46655225 / 21952 

p the local height decimal 

2 ( 7 / 3 )*ln( 2 ) 1.617343421306 
3 13 / 12 )*ln( 3 ) 1.190163312723 
7 ( 1 / 1 )*ln( 7 ) 1.945910149055 
41 ( 1 / 3 )*ln( 41 ) 1.237857355568 
ox .039300793087 

The global height is 6.030575031739 

Regulator : 18.87131764437 

for P, Q E E(Q) represents a symmetric bilinear form on E(Q). If E has rank two 
over Q and P = P1, Q = P2 are two basis points of E(Q), the quantity 

R = det(13(P1, P)),,j=112 E R 

is called the regulator of the elliptic curve E over Q. In addition to the Neron-Tate 
height of the basis points P1, P2 of the rank-two curves E in Selmer's tables [8], we. 
have also computed their regulator R. More detailed information about Selmer's 
curves is to be found in [6]. To begin with, we list in detail two examples, namely the 
curves with A = 30 and A = 246 in [8] (see Table 2). 
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In analogy to Silverman [9], we now use these Selmer curves to estimate the 
constants in Lang's Conjecture 3. Suppose E over Q is given in Weierstrass normal 
form 

(E) y2 =X3 + ax + b (a, b E Z). 

Following Lang [6], we define the height of E over Q to be the number 

H(E) = max{la 1, |b12}, 

so that approximately 

h(E) = -logH(E) 6tvc 

where again v., =-log } } denotes the additive archimedean valuation of Q. Let N 
stand for the conductor of E over Q (see [11]). 

Then we enunciate, in the case of rank-two curves, 
LANG'S CONJECTURE 3. There is a basis { P1, P2 } of E(Q) modulo torsion such 

that 6(P1) < 6(P2) and 

At PI) < cIH( E )1/24 . e?(N)12 . log N -(21r3)1/2 

6(P2) < c2H(E)'/'2 N (N) logN* c 

for some positive real constants c, cl, c2, where 

lim ?(N) = 0. 
N 0o 

Now the constants cl and c2 in Lang's Conjecture 3 satisfy the inequalities 

HE )1/24 . N(N)/2. log N (213) /2 

cl) I 8(P1) 

/ -1 { tE)/1 .N* N log N. c - 
C2 V 86(P2) 

) 
On choosing c = 1 and putting, in analogy to the example on p. 166 of [6], 

,(N) = (log N. log log N)12, 

we obtain for the constants cl and c2 the estimatestt 

cl > 0.021,784,..., c2 >O0.002,709,.... 

Here we let E range over the rank-two curves in [8] and take the maximal values for 
cl and c2, which are attained at the curves with A = 246 and A = 30, respectively. 
For the sake of completeness, we include here the numerical estimates of the 
constants cl and c2 for all values of A in Selmer's table [8] in order to show how cl 
and c2 oscillate as A varies (see Table 3). 

" This estimation is based on the assumption that the points in Selmer's table [8] are of minimal height. 
We wish to thank M. Reichert for verifying this on a Siemens PC MX-2 for Selmer's curves with A = 30, 
37, 65, 91, 110, 124, 126, 163, 182, 217, 254, 342, 468 and 469. Only for A = 254, the point P1 + P2 is to 
be taken instead of P, since it has a slightly smaller height value. 
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TABLE 3 

19 0.00513126 0.00110389 
30 0.0192703 0.00270903 
37 0.00483937 0.000962382 
65 0.00345923 0.00182501 
86 0.00629273 0.00227975 
91 0.0036522 0.000438337 

110 0.012277 0.00153855 
124 0.00374265 0.00174993 
126 0.00433063 0.00114267 
127 0.00414683 0.000940948 
132 0.0183099 0.00244798 
153 0.0105335 0.00111188 
163 0.00458141 0.000483074 
182 0.00445021 0.000517017 
183 0.00524747 0.00199503 
201 0.00511671 0.00120915 
203 0.0095474 0.00116455 
209 0.00721788 0.000812224 
210 0.0126048 0.00121204 
217 0.00308153 0.000319989 
218 0.00327199 0.00201074 
219 0.00500126 0.00171349 
246 0.0217843 0.00193905 
254 0.00531365 0.000936257 
271 0.00370666 0.000782067 
273 0.00472123 o.ooo663038 
282 o.ol82864 0.00183782 
309 0.00457362 0.00227242 
335 0.00274443 0.00165495 
342 0.00352578 0.00103604 
345 0.0142214 0.00141568 
348 0.0175728 0.0019122 
370 0.00282848 0.00117946 
379 0.0038473 0.000711233 
390 0.0111818 o.ooo859o68 
397 0.00349161 0.000596949 
399 0.0042891 0.000624869 
407 0.00267502 0.00118686 
420 0.0121164 0.00107526 
433 0.00518512 0.000522935 
435 0.0139496 0.00147541 
436 0.00482868 0.00160066 
446 0.0041804 0.00145041 
453 0.00415706 0.0o168546 
462 0.0108269 0.000877993 
468 0.00388973 0.00098101 
469 0.00339982 0.000304454 
477 0.00744997 0.00111861 
497 0.00531293 0.000907821 
498 0.0171181 0.0014825 
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